解答用紙

解答例

第1問

問1	問2			問3			
ア	1	ウ	エ	オ	カ	+	ク
16	-3	5	-4	3	12	5	81
問4							
ケ	П	サ	シ	ス			
0	1	-2	-2	-1			

第2問

問1				問2			
ア	イ	ウ	エ	オ	カ	+	ク
1	6	1	3	11	36	8	9
F	問3						
ケ	コ						
1	36						

第3問(記述問題)

問1	問2(1)
2 次関数は $f(x) = 3x^2 - 6x + 3 = 3(x - 1)^2$ $(0 \le x \le 3)$ と変形できることから、この曲線 $y = f(x)$ は 頂点 $(1,0)$ をもつ下に凸の放物線である。 よって、 $f(0) = 3$ 、 $f(1) = 0$ 、 $f(3) = 12$ であるから、この関数は $x = 1$ のとき最小値 $y = 0$ 、 $x = 3$ のとき最大値 $y = 12$ をとる。	曲線上の点 $(t,3(t-1)^2)$ を通る接線の方程式は $y=6(t-1)(x-t)+3(t-1)^2=3(t-1)\{2(x-t)+(t-1)\}=3(t-1)(2x-t-1)$ である。 点 $(2,0)$ を通ることから、 $3(t-1)(2\times 2-t-1)=3(t-1)(3-t)=0$ 。 よって $t=1,3$ である。 したがって、2つの接線の方程式は $y=0,\ y=3(3-1)(2x-3-1)=12(x-2)$ である。

問2(2)

Sは1 $\leq x \leq$ 3において曲線、2点(2,0),(3,12)を結ぶ線分そしてx軸で囲む面積であるから

$$S = \int_{1}^{3} f(x)dx - \frac{1}{2} \times 1 \times 12 = [x^{3} - 3x^{2} + 3x]_{1}^{3} - 6 = 8 - 6 = 2$$