令和7年度

解答用紙

解答例

第1問

問1		問 2				問3		問 4	
ア	1	ウ	エ	才	カ	+	ク	ケ	
1	2	1	2	2	3	3	4	出題ミスにより、掲載しません 全員正解としています	

第2問(記述問題)

問1 問 2 (2) f(x) が極値を持たないのは f'(x) = 0 が異なる 2 つ k = a + b とすると の実数解を持たないとき、すなわち f'(x) = 0 の判別 $b = -a + k \cdots 4$ 式が0以下のときである。 となり、傾きは負で切片がよである。 $f'(x) = x^2 + ax + b$ したがって、直線④ が点 (a, b) = (6, 9) を通るとき、 より 切片が最大値 $a^2 - 4b \leq 0$ k = 6 + 9 = 15を得る。 をとる。 問2(1) 問2(3)

 $a - 2b + 12 \ge 0$ より $b \le \frac{a}{2} + 6 \quad \cdots \text{ } \bigcirc$

また、問1より

$$b \ge \frac{a^2}{4} \quad \dots \textcircled{2}$$

したがって、点(a,b)の存在する ab 平面上の領域は ① と②をともに満たす領域である。連立方程式 $\begin{cases} b = \frac{a}{2} + 6 \\ b = \frac{a^2}{4} \cdots 3 \end{cases}$

$$\begin{cases} b = \frac{a}{2} + 6 \\ b = \frac{a^2}{4} \cdots \text{ } \end{cases}$$

を解くと、(a, b) = (-4, 4), (6, 9) であるから領域の面

$$\int_{-4}^{6} \left(\frac{a}{2} + 6 - \frac{a^2}{4} \right) da = \frac{125}{3}$$

である。

直線④が放物線 ③ と接するとき直線④ の切片が 最小となる。④と③が接するのは

$$-a + k = \frac{a^2}{4}, \quad \frac{a^2}{4} + a - k = 0$$

が重解を持つとき、すなわち判別式が 0 となるときで あるから

$$1^2 - 4 \cdot \frac{1}{4} \cdot (-k) = 1 + k = 0$$
, $\therefore k = -1$
このとき、④ と ③ の接点は $\frac{a^2}{4} + a - (-1) = 0$, $\therefore a = -2$

より (a, b) = (-2, 1) となり, 最小値 k = -1 である.